Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Aquatic deoxygenation as a planetary boundary and key regulator of Earth system stability

Abstract

Planetary boundaries represent thresholds in major Earth system processes that are sensitive to human activity and control global-scale habitability and stability. These processes are interconnected such that movement of one planetary boundary process can alter the likelihood of crossing other boundaries. Here we argue that the observed deoxygenation of the Earth’s freshwater and marine ecosystems represents an additional planetary boundary process that is critical to the integrity of Earth’s ecological and social systems, and both regulates and responds to ongoing changes in other planetary boundary processes. Research on the rapid and ongoing deoxygenation of Earth’s aquatic habitats indicates that relevant, critical oxygen thresholds are being approached at rates comparable to other planetary boundary processes. Concerted global monitoring, research and policy efforts are needed to address the challenges brought on by rapid deoxygenation, and the expansion of the planetary boundaries framework to include deoxygenation as a boundary helps to focus those efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: How dissolved oxygen interacts with other planetary boundaries and major Earth system elements.
Fig. 2: Major drivers of deoxygenation in aquatic ecosystems.

Similar content being viewed by others

References

  1. Rockström, J. et al. A safe operation space for humanity. Nature 461, 472–475 (2009).

    PubMed  Google Scholar 

  2. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  3. Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

    PubMed  PubMed Central  Google Scholar 

  4. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    PubMed  PubMed Central  Google Scholar 

  5. Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Google Scholar 

  6. Ferrer, E. Climate–Fishery Interactions in Coastal Ecosystems. Thesis, Scripps Institute of Oceanography, UC San Diego, 6–47 (2023).

  7. Raymond, J. & Segrè, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).

    CAS  PubMed  Google Scholar 

  8. Fang, J. Animals thrive without oxygen at sea bottom. Nature 464, 825 (2010).

    CAS  PubMed  Google Scholar 

  9. Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    CAS  PubMed  Google Scholar 

  11. Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1242 (2015).

    CAS  PubMed  Google Scholar 

  12. Pohl, A. et al. Continental configuration controls ocean oxygenation during the Phanerozoic. Nature 608, 523–527 (2022).

    CAS  PubMed  Google Scholar 

  13. He, T. et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci. 12, 468–474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kraft, B. et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science 375, 97–100 (2022).

    CAS  PubMed  Google Scholar 

  15. Kreling, J. et al. The importance of physical transport and oxygen consumption for the development of a metalimnetic oxygen minimum in a lake. Limnol. Oceanogr. 62, 348–363 (2017).

    Google Scholar 

  16. Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).

    CAS  Google Scholar 

  17. Mi, C. et al. The formation of a metalimnetic oxygen minimum exemplifies how ecosystem dynamics shape biogeochemical processes: a modelling study. Water Res. 175, 115701 (2020).

    CAS  PubMed  Google Scholar 

  18. Smith, K. L., Messié, M., Connolly, T. P. & Huffard, C. L. Decadal time‐series depletion of dissolved oxygen at abyssal depths in the northeast Pacific. Geophys. Res. Lett. 49, e2022GL101018 (2022).

    CAS  Google Scholar 

  19. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS  PubMed  Google Scholar 

  20. Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    CAS  PubMed  Google Scholar 

  21. Brune, A., Frenzel, P. & Cypionka, H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol. Rev. 24, 691–710 (2000).

    CAS  PubMed  Google Scholar 

  22. Huang, J. et al. The global oxygen budget and its future projection. Sci. Bull. 63, 1180–1186 (2018).

    CAS  Google Scholar 

  23. Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).

    Google Scholar 

  24. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    CAS  PubMed  Google Scholar 

  25. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    PubMed  Google Scholar 

  26. Limburg, K. E., Breitburg, D., Swaney, D. P. & Jacinto, G. Ocean deoxygenation: a primer. One Earth 2, 24–29 (2020).

    Google Scholar 

  27. Zhi, W., Kligler, C., Liu, J. & Li, L. Widespread deoxygenation in warming rivers. Nat. Clim. Change 13, 1105–1113 (2023).

    CAS  Google Scholar 

  28. Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).

    Google Scholar 

  29. Ono, T., Watarlabe, Y. W., Tadokoro, K. & Saino, T. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett. 28, 3285–3288 (2001).

    CAS  Google Scholar 

  30. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Google Scholar 

  31. Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res. 1 Oceanogr. Res. Pap. 57, 587–595 (2010).

    CAS  Google Scholar 

  32. Grégoire, M. et al. A global ocean oxygen database and atlas for assessing and predicting deoxygenation and ocean health in the open and coastal ocean. Front. Mar. Sci. 8, 724913 (2021).

    Google Scholar 

  33. Jane, S. F. et al. Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Glob. Change Biol. https://doi.org/10.1111/gcb.16525 (2022).

  34. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1136 (2015).

    CAS  PubMed  Google Scholar 

  36. Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).

    CAS  PubMed  Google Scholar 

  37. Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coasts 36, 697–707 (2013).

    CAS  Google Scholar 

  38. Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376, 524–526 (2022).

    CAS  PubMed  Google Scholar 

  39. Mortimer, C. H. The exchange of dissolved substances between mud and water in lakes. Br. Ecol. Soc. 29, 280–329 (1941).

    CAS  Google Scholar 

  40. Wang, S., Jin, X., Bu, Q., Jiao, L. & Wu, F. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).

    CAS  Google Scholar 

  41. Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J. & Kosten, S. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience 67, 928–936 (2017).

    Google Scholar 

  42. Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Google Scholar 

  43. O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015GL066235 (2015).

  44. Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10, 757–761 (2020).

    Google Scholar 

  45. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    PubMed  Google Scholar 

  46. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    CAS  PubMed  Google Scholar 

  47. Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Google Scholar 

  48. Garçon, V. et al. Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: from climate to fish—the VOICE Initiative. Front. Mar. Sci. 6, 722 (2019).

    Google Scholar 

  49. Wiltse, B., Yerger, E. C. & Laxson, C. L. A reduction in spring mixing due to road salt runoff entering Mirror Lake (Lake Placid, NY). Lake Reserv. Manage. 36, 109–121 (2020).

    CAS  Google Scholar 

  50. Cliff, E., Khatiwala, S. & Schmittner, A. Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. Nat. Geosci. 14, 43–50 (2021).

    CAS  Google Scholar 

  51. Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).

    CAS  PubMed  Google Scholar 

  52. Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9, 227–231 (2019).

    Google Scholar 

  53. Woolway, R. I. et al. Phenological shifts in lake stratification under climate change. Nat. Commun. 12, 2318 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, J., Leavitt, P. R., Zhang, Y. & Qin, B. Anthropogenic eutrophication of shallow lakes: is it occasional? Water Res. 221, 118728 (2022).

    CAS  PubMed  Google Scholar 

  55. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2021).

  56. Ruvalcaba Baroni, I., Palastanga, V. & Slomp, C. P. Enhanced organic carbon burial in sediments of oxygen minimum zones upon ocean deoxygenation. Front. Mar. Sci. 6, 839 (2020).

    Google Scholar 

  57. Finlay, K. et al. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming. Nature 519, 215–218 (2015).

    CAS  PubMed  Google Scholar 

  58. Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    PubMed  Google Scholar 

  59. Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    CAS  Google Scholar 

  60. Niemeyer, D., Kemena, T. P., Meissner, K. J. & Oschlies, A. A model study of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales. Earth Syst. Dyn. 8, 357–367 (2017).

    Google Scholar 

  61. Landolfi, A., Dietze, H., Koeve, W. & Oschlies, A. Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle. Biogeosciences 10, 1351–1363 (2013).

    CAS  Google Scholar 

  62. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Google Scholar 

  63. Codispoti, L. A. Interesting times for marine N2O. Science 327, 1339–1340 (2010).

    CAS  PubMed  Google Scholar 

  64. Beman, J. M. et al. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones. Nat. Commun. 12, 7043 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Landry, C. A., Steele, S. L., Manning, S. & Cheek, A. O. Long term hypoxia suppresses reproductive capacity in the estuarine fish, Fundulus grandis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 317–323 (2007).

    CAS  PubMed  Google Scholar 

  66. Brander, K. Reduced growth in Baltic Sea cod may be due to mild hypoxia. ICES J. Mar. Sci. 77, 2003–2005 (2020).

    Google Scholar 

  67. Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).

    CAS  PubMed  Google Scholar 

  68. Verberk, W. C. E. P. et al. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature‐dependent manner. Glob. Change Biol. 28, 5695–5707 (2022).

    CAS  Google Scholar 

  69. Chapman, L. J. & Hulen, K. G. Implications of hypoxia for the brain size and gill morphometry of mormyrid fishes. J. Zool. 254, 461–472 (2001).

    Google Scholar 

  70. Kump, L. R., Pavlov, A. & Arthur, M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397–400 (2005).

    CAS  Google Scholar 

  71. Stockey, R. G., Pohl, A., Ridgwell, A., Finnegan, S. & Sperling, E. A. Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology. Proc. Natl Acad. Sci. USA 118, e2101900118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Levin, L. A. & Gallo, N. D. in Ocean Deoxygenation: Everyone’s Problem—Causes, Impacts, Consequences and Solutions (eds Laffoley, D. & Baxter, J. M.) 341–361 (International Union for Conservation of Nature and Natural Resources, 2019).

  73. Breitburg, D. L., Hondorp, D. W., Davias, L. A. & Diaz, R. J. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annu. Rev. Mar. Sci. 1, 329–349 (2009).

    Google Scholar 

  74. Rose, K. A. et al. in Ocean Deoxygenation: Everyone’s Problem—Causes, Impacts, Consequences and Solutions (eds Laffoley, D. & Baxter, J. M.) 519–544 (International Union for Conservation of Nature and Natural Resources, 2019).

  75. Cabré, A., Marinov, I., Bernardello, R. & Bianchi, D. Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences 12, 5429–5454 (2015).

    Google Scholar 

  76. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    CAS  Google Scholar 

  77. Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 12, 8 (2021).

    Google Scholar 

  78. Ni, W., Li, M. & Testa, J. M. Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay. Sci. Total Environ. 737, 139717 (2020).

    CAS  PubMed  Google Scholar 

  79. Levin, L. et al. Deep-sea impacts of climate interventions. Science 379, 978–981 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.C.R. acknowledges support from US National Science Foundation (NSF) grant nos 2048031 and 1754265. E.M.F. acknowledges graduate support from the NSF GRFP (UCSD DGE-2038238), UC San Diego (PPPF) and the Aburto Lab at the Scripps Institution of Oceanography, and postdoctoral support from UC Santa Cruz. S.R.C. acknowledges support from the North Temperate Lakes Long-Term Ecological Research programme from the NSF Cooperative Agreement no. DEB-2025982. S.C.D. acknowledges support from NSF grant no. IOS-2345023. V.C.G. and M.G. acknowledge support from the CE2COAST project funded by ANR (FR), BELSPO (BE), FCT (PT), IZM (LV), MI (IE), MIUR (IT), Rannis (IS), IRP MAST (Multiscale Adaptive Strategies) and RCN (NO) through the 2019 ‘Joint Transnational Call on Next Generation Climate Science in Europe for Oceans’ initiated by JPI Climate and JPI Oceans. V.C.G. also acknowledges support from the EU H2020 FutureMares project (Theme LC-CLA-06-2019, grant agreement no. 869300) and the Scientific Committee on Oceanic Research (SCOR) Working Group 155, funded by national SCOR committees and a grant to SCOR from the NSF (grant no. OCE-1840868). P.R.L. acknowledges support from the Canada Research Chairs programme and grants from the Natural Sciences and Engineering Research Council of Canada. M.G. acknowledges support from the EU H2020 BRIDGE-BS project under grant agreement no. 101000240 and the EU HE NECCTON project under grant agreement no. 101081273. S.F.J. was supported by the Cornell Atkinson Center for Sustainability. S.F.J. was also partially supported by a Society of Science Postdoctoral Fellowship from the University of Notre Dame. L.A.L. acknowledges support from an NSF AccelNet Program award no. 2114717 via University of Texas subaward no. 308056-0001A and the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science Competitive Research Program under award no. NA18NOS4780172. V.C.G., L.A.L., D.B., A.O., S.C. and M.G. acknowledge fruitful discussions around the topic of deoxygenation as a potential planetary boundary, which took place within the Global Ocean Oxygen Network Working Group being supported by IOC UNESCO.

Author information

Authors and Affiliations

Authors

Contributions

All authors (K.C.R., E.M.F., S.R.C., S.C., S.C.D., V.C.G., M.G., S.F.J., P.R.L., L.A.L., A.O. and D.B.) contributed to the writing and editing of this manuscript.

Corresponding author

Correspondence to Kevin C. Rose.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks David Karl, Thorsten Blenckner, Katherine Richardson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, K.C., Ferrer, E.M., Carpenter, S.R. et al. Aquatic deoxygenation as a planetary boundary and key regulator of Earth system stability. Nat Ecol Evol 8, 1400–1406 (2024). https://doi.org/10.1038/s41559-024-02448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02448-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology